If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+84=180
We move all terms to the left:
x^2+84-(180)=0
We add all the numbers together, and all the variables
x^2-96=0
a = 1; b = 0; c = -96;
Δ = b2-4ac
Δ = 02-4·1·(-96)
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{6}}{2*1}=\frac{0-8\sqrt{6}}{2} =-\frac{8\sqrt{6}}{2} =-4\sqrt{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{6}}{2*1}=\frac{0+8\sqrt{6}}{2} =\frac{8\sqrt{6}}{2} =4\sqrt{6} $
| 3x+31=6x+13 | | -5x+3/5=-4 | | 100=5w-35 | | 6(x+2)=2(2x+15) | | 2/2x+3=2/3x+1/3 | | 2000x+5,560=380x+270 | | Y=1/2(x+3)+5 | | –3=t3−5 | | 6(x+2)=2(2x+16 | | 13x=-56 | | –3=t3− 5 | | -5+g=-11g+49 | | 21x+7x=196 | | 9x-17=4x=28 | | 3x+4+3x+4=11x-17 | | -7/9x-8/45x+1/5x=-68 | | 0=-4.9t^2+20t+100 | | −3x+5=-16 | | 31=-1/6k | | -9(x+4)+44=15-10x | | 1/4n-3=101/2 | | -4y+44=-4y+44 | | 21x+7×=186 | | 14(8x-16)=6x+8 | | 6=x-2=14 | | 115-d=44 | | 3x-30=x+5 | | u+4.38=8.65 | | 12.7=c-9.3 | | 5(2x-1)-x=4(2x+1)+x | | 5x+3x-2x+3=15 | | ℎ(t)=−4.9t^2+14.7t |